If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x+2=0
a = 4; b = 9; c = +2;
Δ = b2-4ac
Δ = 92-4·4·2
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*4}=\frac{-2}{8} =-1/4 $
| -9|2x+5|=-63 | | 3x+7=113 | | 12=54-x | | 1/3÷x+12=3x | | 6n12=n+3 | | 6x+2(-3x+4)=8 | | 9x+11+7x-5=102 | | -4n-12=-28 | | x/8+6=36 | | 7b-17=19 | | x+3(2x+3)=12 | | -8x-9x-27=-3x-29 | | 25+15m=4750 | | 2x=18* | | 0.2x+2.2=0.6x-0.2 | | 6m+21=-30+-5m | | -x4=-20 | | (x)/(5)+7=-3 | | 5/3(z)=15 | | 1/3x+12=3x | | 7b+17=19 | | 8y-12=5y+2 | | 4(y-1)=2y+12 | | 4x=5-1 | | |3x|+4=43 | | 1/4y+8=1/7y | | 5/3*z=15 | | 6x+6=6-6x | | 21+8t=50+11t | | 4+3(z-2)=-6+5z | | -5(-7x-9)=-165 | | 11x-4+8=180 |