If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5-21=0
We add all the numbers together, and all the variables
4x^2-16=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| 1/4+1/8+1/5+1/x=4 | | 4*8*5*x/4+8+5+x=4 | | 12*5x/12+5x=4 | | 6(2y-1)=5(4+1) | | 5^x+5(^x+2)=250 | | 4+18=6y-3 | | 4=5(1.6)-7y | | 11x^2-5x-19=0 | | 5x+5(x+2)=250 | | 3/4x=2x-5= | | 5^x+5^(2x+1)=250 | | 5^x+5^(x+2)=250 | | y=-0.2+0.5 | | 4n+2=18- | | X4-5x2-14=0 | | 8x-12.87=7x+12.13 | | 5x2-x-5=0 | | 5x-1+4x-4+x+6=11 | | 3x-2+2x-3+5=20 | | -7g-2=-30 | | 15t-2−t−6=0 | | 15t2−t−6=0 | | 50 | | 50 | | x+x+10=54 | | y-3/8+5=14 | | 1/2t-3=2t+3 | | 6x-4+6x-4+8x+2=34 | | 2x-1+2x-4+x+3=11 | | 20*2+35*2=x*2 | | 20^2+35^2=x^2 | | 4x+2+4x+3=61 |