If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x=24
We move all terms to the left:
4x^2+4x-(24)=0
a = 4; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·4·(-24)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*4}=\frac{16}{8} =2 $
| 8x+6=4x+38=180 | | |3z-6|=9 | | 2(3x-4)=10+6x | | (y-1)2=3y-10 | | N/2-4n/16=3/8 | | X-3/4=x+6/10 | | 5x-5=3x+13=180 | | -.01=e^-8 | | C=3t+4/t | | 4x-7=9x+22 | | 3(1-3)=2-4x+7 | | 10-y=-5 | | 900-12=x | | 1=x/7+5 | | 0.3v-45=5 | | x^2-5x-8=2x | | -22=8(6-5x)-5(x-4) | | 4m-15m-50=126 | | x+116+(x-3)+150+100+(x-18)=720 | | (h/3)+10=8 | | 5g+13+2g=7(g+6) | | 4m-15m-50=26 | | -7(6x+6)=-42 | | 6x-7+4x+36x-7=60 | | 18y=17 | | -1/2(7z=4)+1/5(5z-15) | | x(x-5)-62=-5x+82 | | 6x-7+4x+36x-7=120 | | 2/3b+5=20−b | | -7(5x-7)=-371 | | 2b+5=20−b | | (n/5)-15=6 |