If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x-8=0
a = 4; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·4·(-8)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*4}=\frac{8}{8} =1 $
| 1/2x-10+3/2=x+1 | | 5v+35=-4v-19 | | 7r-6=7r-10 | | 4y-14=10y= | | 7x-4=10x+9 | | 100/7(x-70)=100/7(x)-1000 | | 10x7-19x=92 | | 6=4r-3r | | -4y+2y-12=-22 | | 1/2x-10=x+1 | | 7x+8(2x-11)=-19 | | 5/4(4x+1)=4/5(5-1) | | 3(y-8)=21 | | 4/3x=18 | | 10=9v-7v | | x+6+3x-10=180 | | -8/3x+3/2x=5/18-2x | | 2(w+6)=+3(4w+4) | | 7y^2+6y-15=0 | | 24h^2-8h-42=0 | | c-14=3 | | Y+5=2y+1 | | 3z/10-7=0 | | 3x+9=7x+7 | | -18x=2x^2+40 | | 5=x/3-16 | | 7x^2-50x-432=0 | | x+1/4=7/8 | | 7-2n=-11+7n-6n | | x^2-50x-432=0 | | -(2x)^+1=-3 | | 72=3/4c |