If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x-63=0
a = 4; b = 4; c = -63;
Δ = b2-4ac
Δ = 42-4·4·(-63)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-32}{2*4}=\frac{-36}{8} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+32}{2*4}=\frac{28}{8} =3+1/2 $
| 9.5+8.6x=x+83.5 | | 1/3x-12=100-x | | (-2t-5)(8t-5)=0 | | 3y²+7y-6=0 | | (-8x^2+7x-4)(8x+2)=0 | | (1-5a)(1-7a)=0 | | (3b-3)(4b-5)=0 | | (b+3)(b+4)=0 | | Y^2-4y-32=-0 | | 8(w+6)=56 | | T=6000+2x^2/x | | T=6000+2b^2/b | | A=x^2-3x+5 | | 3p-7+p=13. | | 3x(2x+3)-2x(3x-4)-5=0 | | 1/x+1/(x-5)=9/100 | | 4x(3+2)=2(2x-1) | | 10x+30=6x-20 | | -27+4n=44 | | 8-9u=-73 | | {x/5}+4=8 | | -3=-3(v+5) | | 14(a+12)=126 | | 16(p-21)=256 | | v/7-4=-3 | | -9=8w+7 | | 10x+2x=200000 | | (x+4)(x-4)(x-3)(x+3)=0 | | 60000-0.25x=x | | 5x-2=(3/4)x | | 260000-0.25x=x | | (p+2)(p^2-2p+4)=0 |