If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+40x=0
a = 4; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·4·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*4}=\frac{-80}{8} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*4}=\frac{0}{8} =0 $
| 3y+2=−13 | | x/9+7=21 | | 1+-4y=‐3.5+0.5y | | x/6+8=72 | | 17x+16x+9=4x-9 | | 1-4y=‐3.5+0.5y | | 12-q=5q | | X3+7X2-4X+3=y | | 16x+17x+11=-9+4x | | 5m^2+m-1=0 | | a/7-19=12 | | –8x−15x+–9x+14x+9x=18 | | 17x+16x+9=0-9 | | 8×(2+x)-3x=6x-68 | | x/5-32=43 | | 30(x-(9/5))=0 | | 30(x-(9/5))/((x-1)^(1/3))=0 | | 3.1x+7-7.4=1.5x-6(x-3/2) | | y^2-14y=46 | | 29x-11=x-9 | | -19-1,2x=51+3,8x | | 16x+3=9x+45 | | -7x-21=8x+99 | | 2x+10+3x+25+4x-32=360 | | y+2.2=14.8 | | 2m*2m=16 | | X+18=z+4 | | (2x-1)(3x+1)=50 | | 4a-5=10-a | | 4a-5=10a | | 6^216=3x | | 3b+6b=62 |