If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x-45=0
a = 4; b = 30; c = -45;
Δ = b2-4ac
Δ = 302-4·4·(-45)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-18\sqrt{5}}{2*4}=\frac{-30-18\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+18\sqrt{5}}{2*4}=\frac{-30+18\sqrt{5}}{8} $
| m/18=8 | | -30=a(-12)-(-73.2) | | 2*(2x-5)=3*(2x+8) | | 5n–24n+2=10 | | 162=18w | | 21m=525 | | (2x-7)*x=30 | | 25h=650 | | (3x-4)(3x+10)=90 | | x-9.893=-9.693 | | 4d^2-4d+9=0 | | 3t+-10=8 | | 9x-10=6x+6 | | 2x-7*x=30 | | 5x^2-7=3x^2+41 | | 7xx=16 | | v-5.1=0.8 | | 4⋅(x+14)=20 | | 3x-15+2x+10+4x+20+5x-5=360 | | -29=n+(-12) | | (4x-3)-(x-5)=14-8x | | (3y-1)²=0 | | -3=17-p | | -30=-11+b | | 7=k+19 | | 9b2=27 | | (k)6/8=3/10 | | -22=b-5 | | -2d-2d+4=0 | | n-19=-34 | | 3m^2=-1 | | 5x+12=3x+20. |