If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x=78
We move all terms to the left:
4x^2+2x-(78)=0
a = 4; b = 2; c = -78;
Δ = b2-4ac
Δ = 22-4·4·(-78)
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{313}}{2*4}=\frac{-2-2\sqrt{313}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{313}}{2*4}=\frac{-2+2\sqrt{313}}{8} $
| 5^(x−9)=7 | | 6(7-(-4x-8))=144x+300 | | 7(x+3)=9x+29 | | 2.4−0.5y=2.4+0.5y | | 2u-27=-3(u-1) | | -8(x-3)=9x+7 | | y=8(1+0.15)^3 | | y=8(1+0.15)3 | | 2(2-x)=1-(x-2) | | 4597+x=4881 | | -3t+8=4t-5 | | 0.06x=0.156 | | -3y+8=10 | | 7x+4=10x-206) | | 8(x+34)=288 | | 8(4x+6)=11-(x+2) | | 4(x-14)=184 | | 34-2x=25 | | 89-2x=69 | | 7/3=15/2x+1 | | 3/7=g/14-2/7 | | 5(x+10)=4(x-(10-x)) | | -3(y+2)=-7y-18 | | 5(x+10)=4(x-(10=x)) | | 3(x-4)=-2x-27 | | P=-3w+8 | | -7u-49=9(u-9) | | 4.7x^2+9x=0 | | -8/11x=-6/7 | | 4x+22=13x-15 | | 3(w-6)=-8w-29 | | -7x-19+21=51 |