If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-7=0
a = 4; b = 2; c = -7;
Δ = b2-4ac
Δ = 22-4·4·(-7)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{29}}{2*4}=\frac{-2-2\sqrt{29}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{29}}{2*4}=\frac{-2+2\sqrt{29}}{8} $
| w-44+42+97=180 | | v+47+3v+3v=180 | | 4/5r+20=-20 | | 3s-20=s-10+s-10=180 | | 2.464x+8.691=1.703 | | 2^(x+3)=2^2x | | 40(x+20)=3x+84-x | | 0=5/3x-9 | | 3y+16+2y+9+2y+15=180 | | 2^(x+2)=2^2x | | 3t-7=t=11 | | x+(-5)=17 | | 4^x=0.125 | | 10x+13=8x-5 | | 37+x+34+x-5=180 | | X^2÷x-2=4÷x-2 | | 6p÷50=-5 | | 30=x/4+6 | | 7x-75=2x+20 | | 8u+18u+u+45=180 | | 2(4=2r)=-2(r+5) | | 5+2x+31=x+25 | | 82+3v+v+38=180 | | 4x+3.1=6x+1.9 | | 2w+2w+w+30=180 | | 1/8b-16=21 | | 18/3=s | | 9p+5=-1p+45 | | 2=3(s–4)+8 | | -79=7x+3(4x-1 | | -11+8x=-11 | | 35+109+12s=180 |