If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-252=0
a = 4; b = 2; c = -252;
Δ = b2-4ac
Δ = 22-4·4·(-252)
Δ = 4036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4036}=\sqrt{4*1009}=\sqrt{4}*\sqrt{1009}=2\sqrt{1009}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1009}}{2*4}=\frac{-2-2\sqrt{1009}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1009}}{2*4}=\frac{-2+2\sqrt{1009}}{8} $
| -5/6e+2/3e=-24 | | 5(6x-2)-3(2x+3)=-4(x+2)-2 | | |4x+2|-3=7 | | 75+3y+4y=4y+6 | | 7v-2v=125V= | | (60-50x)=3(60-50) | | (x+100)+(x+76)+(66)+(3x-47)=360 | | 10=-3v+8v | | (13x+41)+(x+96)+88+(x+90)=360 | | (13x+41)+(x+96)+88+(x+90)=180 | | 4x-1+105=180 | | 5(3x+2)=4(2x+4) | | 25x-10=-60 | | (2x-71)+(x+17)+52+(x-38)=360 | | X/3+3/4=2-x/2 | | (2x-71)+(x+17)+52+(x-38=180 | | -0.10(40)+0.35x=0.05(x-20) | | 5x-2(x-2)=-9+5x3 | | (2x-100)+(x+12)+(x+48)=360 | | (19x+97)+(15x+82)=247 | | x*x+15=8x | | 8x-4=+2-28 | | (x+45)+(x+84)=215 | | (4x-5)+(x+72)=222 | | 12x(10)=3x-6 | | 3^x=5^2x | | (7x-16)+(x+34)=194 | | 2/5p=15 | | 10w=42000 | | 7a+2=-3a | | 2y=-12-3(-2) | | (x+17)+(4x-82)=180 |