If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-10=0
a = 4; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·4·(-10)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*4}=\frac{-2-2\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*4}=\frac{-2+2\sqrt{41}}{8} $
| Y=X⁴-3x²-1 | | 5x-2(x-6)=2x+2(x-1 | | 6(x+3)=51 | | 5/3=y-5/4 | | 7-2a(-28)=-70 | | 2.5x+100=6.25+10x | | 2-7a=-70 | | 2*7-a=-30 | | F(x)=3x^+2x+1 | | x+1.5x=49 | | 4.8p=33.6 | | 6x-4(-2x+4)=5 | | 2w+4/4w-2w-2/w=0 | | 2(1-x)=10 | | 75=31+2x | | 7-n/3=5 | | -6.6q=-33 | | 2(4a+1)=34 | | 4x−5=−17 | | 2/11=2/y | | 21/33=h/11 | | n+4.4=-8 | | 7x+(10-78/41)=-18 | | x=11/5 | | 3d+14.00-7.00=12.10;1.90 | | 7x+25=25+7x | | 20=1/x | | 2/11=12/x | | |7x|-1=13 | | a/2+17=12 | | 9=–d+17 | | c+3.9=-12 |