If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+23x=35
We move all terms to the left:
4x^2+23x-(35)=0
a = 4; b = 23; c = -35;
Δ = b2-4ac
Δ = 232-4·4·(-35)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-33}{2*4}=\frac{-56}{8} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+33}{2*4}=\frac{10}{8} =1+1/4 $
| 3=y-y.y | | 15-6g=3(3-4g) | | 3x+27+3=4(2x+2 | | 147=(9s-3) | | 6(x-7)-7(x+21)=35-8(x-56) | | 2k=k−6 | | z+16+8z–20+2z–3=180 | | 8w+10=10w | | 7(1+7x)=-385 | | 32=5z+7 | | ─15+5b=─30 | | 2d=4d+10 | | 4(x+5)-3(x+4)=0 | | 10+h=-9h | | 8-g=19 | | 4x-4x=-8 | | 9x^2-15x+7=3x+2 | | 10+h=–9h | | (3a+3)=60 | | 4w-6=2w | | z+16+2z–3+8z–20=180 | | 4(x+28)-3(-x+14)=21 | | (8n+3)+(9n+7)=180 | | 1x=1x+12+12 | | 20-4y=2y-4 | | 81=-3(1+4m) | | (5x+2)=82 | | (6x-12)/3=0 | | -13y=-15y+16 | | 3x/44=-4/44 | | p+7+2p+68=180 | | 2(3x+9)=10x-10 |