If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x=56
We move all terms to the left:
4x^2+20x-(56)=0
a = 4; b = 20; c = -56;
Δ = b2-4ac
Δ = 202-4·4·(-56)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-36}{2*4}=\frac{-56}{8} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+36}{2*4}=\frac{16}{8} =2 $
| 2.6=10x+8.4 | | 17x+0.15=18x+0.45 | | -.9x-2.1=14 | | y-3.6=8.49 | | 4x+x+22=62 | | K2-8k=-7 | | x(x-6)-8x=-2+5(2x+1) | | 114-u=212 | | 50,000+x=525,000 | | 16x^2-34=15 | | 33x+15=180 | | 33x+14=180 | | -1+5t=34 | | R=6x2 | | K^2+20k+12=-36 | | 180=2x-5+2x+1 | | 1m+.4=3m+.8 | | -3/5x-1=2 | | 7=h+18/6 | | 8.75t+4=17.5t+11 | | 3421=2259+f | | 2x+2=−3 | | (x-7)^2=48 | | 10/x=45/15 | | 1=-11-2y | | 2x+(15+11x)=180 | | 2-3/2x=-1 | | 9n^2+18n-7=0 | | 64=5v-16 | | -11+8=+a | | 3u-44=7(u-8) | | 7x+-5=5x+9 |