If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x+24=0
a = 4; b = 20; c = +24;
Δ = b2-4ac
Δ = 202-4·4·24
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4}{2*4}=\frac{-16}{8} =-2 $
| -9(6x+2)=33-8x | | 34+8x+6=13x+10 | | t(t)=-0.3t^2+1.2t+98.6 | | 2x+46=2x^2+10 | | 3x+2+80=10x-2 | | 5x+25=2x-5x4 | | 6+4(-2t+9)=t+2-7t | | 11x+9=-9x-191 | | 24+21x+6=28x+2 | | 2x+2(-5x+10)=76 | | x=60-4x+14 | | y-67/8=81/7 | | X^2+46=2x^2 | | 7x/12=7/12 | | 5x-5+5x-4=91 | | –14+4p=–7 | | 5x–2=28–x | | 2(6w-5)=9w+7 | | -1=-8m+2(10m-15) | | 3x+42=5x+8 | | -11+13=-2(x+3) | | 3x+16+5x-10=90 | | 5x-2+8x-7=108 | | 4t+0.08=11 | | 3(j−6)=9 | | 10-9x=36 | | -2a=8+-12 | | –14+4p=–70 | | 15q-16q=-8 | | (2x+32)(2x+16)=924 | | 60=4x=14 | | 7/26a+8/13=5/13 |