If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=0
a = 4; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*4}=\frac{-32}{8} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*4}=\frac{0}{8} =0 $
| -6(-+8+8x)+6=-36-3x | | v-3=-4 | | 2t=-25 | | -13-26t+4.9t^2=0 | | m+1/m+10=m-2/m+4 | | -8x-(3x+6)=-3-3(3x-4)-2x | | (4x+18)=(2x+12) | | 2x-2x=73 | | -6(-+8x+6=-36-3x | | x+10/3*6-9=33 | | (n+8/5)=44/15 | | -(x-8)+4x=2() | | 4+3(x+2)+x=30 | | 180=7x-39(-6x+15) | | -8(4n-8)-5=-158 | | (x+700)+x=13500 | | 40x+15+25x=45x+.35x | | (3/4x+30)+(5x-10)+(2/5x+37)=180 | | -9x-(2x+10)=-3-4(3x-4)-3x | | 10+4x=78+-10 | | 5x-7/2=-11 | | 8x-9+10x-9=180 | | -10+5x=2 | | -7=2x-7= | | -4d+6=-8 | | 2x^2+55x-87=0 | | 3/4-14x=-8 | | 49/d=-7/d | | -4d+6=-6 | | 12y−63=3y | | 5x=1.6(3x-1)+2 | | 198=-4x+2-6x+3) |