If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x+4=0
a = 4; b = 16; c = +4;
Δ = b2-4ac
Δ = 162-4·4·4
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{3}}{2*4}=\frac{-16-8\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{3}}{2*4}=\frac{-16+8\sqrt{3}}{8} $
| 14y+32=6y | | x/14=14/4 | | –7c–13=71 | | 2x*16=5x+4 | | 7x-(5x-14=0 | | 6m-9=-123 | | 6=2y+3y= | | x+9=3x-9=2x | | 18/6=x-2/9 | | 2^3x+1=2^10 | | -3.2+z=7 | | 121+p=345 | | 3/4y=3/10 | | 5x+7-x=31 | | x+2.1/2=10 | | −24=-3w=21 | | n+45=105 | | 0.25x-0.75x=3-0.5x | | 4=x/8* | | 6a+3a+1=3+2a-2+5a | | 0.13(x+3000)=6,500 | | r-32=8 | | (5r+1/5)²r=0 | | 4x+2=6x-6=4x-10=5x+13=5x-11 | | 11/3=9/10x | | 9^2+6^2=c^2 | | 3-2/3=9/10x | | 6g=4g−6 | | 4x-3+x+2=180 | | 4x(-4)=-16 | | 7x+17=157 | | (11)(5^t)=(5)(2^t) |