If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x+3=0
a = 4; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·4·3
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{13}}{2*4}=\frac{-16-4\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{13}}{2*4}=\frac{-16+4\sqrt{13}}{8} $
| 4x-7=x-3-5x | | 3.2x=2.1x+6.6 | | 4x-4=5+6x | | -4x-4=5+6x | | 4x/3-7=9 | | 25+14x+7x=0 | | 0=1-4x^-2 | | 4t+3,t=-4 | | Y-6=-5x/7-10/7 | | -2+6-x-4=0 | | 6(3x-5)=7(3x-3) | | 2c,c=-2 | | 55=35-4(x-2) | | 8(5-5)=2(2h-4) | | 15n-6=7n-28 | | 2x+10-x=9+2x-6 | | x+-9+3x-2x+10=3x+9-4x | | 10(.04+,05g)=4g | | x-167=52 | | 4x-32=6x+18 | | x/2=3.4 | | 90=300x0.30xT | | y2-2,y=3 | | 50=350xRx18÷12 | | 2/8(x+4)=0.03125 | | 5.5+x=-6 | | H(-2)=12x | | 5*x=5⅖ | | 10-4x,x=2 | | -20+x=-50 | | 8x-56=30 | | x-(-11)=16 |