If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15.00=128
We move all terms to the left:
4x^2+15.00-(128)=0
We add all the numbers together, and all the variables
4x^2-113=0
a = 4; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·4·(-113)
Δ = 1808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1808}=\sqrt{16*113}=\sqrt{16}*\sqrt{113}=4\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{113}}{2*4}=\frac{0-4\sqrt{113}}{8} =-\frac{4\sqrt{113}}{8} =-\frac{\sqrt{113}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{113}}{2*4}=\frac{0+4\sqrt{113}}{8} =\frac{4\sqrt{113}}{8} =\frac{\sqrt{113}}{2} $
| 3n-+6=18 | | 31+b=7 | | -3/4x+1=-31/8 | | 5+11x=6x+20 | | 6+x•13=19 | | 6+x×13=19 | | 6x+6/5=2/3(11/5x-6/5) | | 6x+6/5=2/3(11/5x-6/5) | | 6+x×13=19 | | x–13+1=7 | | 3(2�−8)=3(2x−8)= 66 | | q/18+10=10 | | q/18+10=10 | | (50-x)+11=32 | | 34+(x-23)=69 | | (9.8)²=(6.5)²+(c)² | | a/20+6=10 | | -1.49=g+3.43/3 | | (350-((45+x)-32))+96=223 | | a20+6=10 | | 77-(45+x)=13 | | (30-x)+21=42 | | -9.64=2.41(y+-8) | | 4c+3c=2 | | °C=0.56(98°f-32) | | 3(2y-2)+3=5y | | (40-x)+31=52 | | -7(-4x+9)=-314 | | 4/v=5/8 | | x=1.5x+600 | | x=1.5x+600 | | (z+17)-66=120 |