If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+13x+10=0
a = 4; b = 13; c = +10;
Δ = b2-4ac
Δ = 132-4·4·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*4}=\frac{-10}{8} =-1+1/4 $
| -3(c-2)=12 | | Y+(2y+5)=180 | | 2y=×+16 | | 6=w-1.2 | | 6^2=-19x-15 | | X+(3x+6)+48=180 | | .4x+2=-34 | | 27=x+5 | | F(x)=5x+2/7 | | 3x/9+4/9=2/9x-3 | | 32=24y-20 | | 18t+5=4t+6 | | X+(x+12)+82=180 | | .1(.5m-6)=2 | | 3x+4/9=2/9x-3 | | 0=-13+11x+x(x) | | 2^3x^-5=64 | | 2^3x-5=64 | | (3+x)/8=5/(9+x) | | 1/3(x-3)+5/6(x-4)=x-3 | | 6x+5=-12+18x-12 | | n=106+53 | | 4s+1=33+46 | | 2c=112+146 | | 6k+5=48+47 | | 2z+1=49+82 | | 3k-7+6=5 | | 2z+1=48+47 | | 4r+2=61+37 | | 5/6t=-2/3 | | 2e=50+100 | | 3x/2+1=x/4–3/2 |