If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-8=0
a = 4; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·4·(-8)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{17}}{2*4}=\frac{-12-4\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{17}}{2*4}=\frac{-12+4\sqrt{17}}{8} $
| 26=-7s+6s | | 11y-1+49=5.79 | | 6f+2+f=14-6f | | A=1000(1+R)n=6 | | 2x+0.35=3x | | 3÷5=j+1÷9 | | -5.24x=19.65 | | -15w+1=-16w-4 | | 0=100-80x+〖12x〗^2 | | x^2+18x+80=168 | | 26=7s+6s | | 15x-30=9x+50 | | 12(x+2)6(x+3)=10x+88 | | 11x-40=7x+80 | | m-4/3=4 | | 3x-7=3(x-6) | | 2/5v=12/25 | | 2g=5-3 | | 2(2r+4)-2=18+2r | | 11x-40=7x | | -.75z+1=-28.812 | | -14.1v+2.04=-7.3v | | -6(y-6)=-3y+9 | | 8(m+100)-3=837 | | 3p=4p+3 | | 18+4n=12n-6 | | 5y+35=75 | | 5x2(x-6)=x-30 | | 27^x=10^-3x | | 3a=12.3 | | 3/4x-12=-6 | | -x+8=¾ |