If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-200=0
a = 4; b = 12; c = -200;
Δ = b2-4ac
Δ = 122-4·4·(-200)
Δ = 3344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3344}=\sqrt{16*209}=\sqrt{16}*\sqrt{209}=4\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{209}}{2*4}=\frac{-12-4\sqrt{209}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{209}}{2*4}=\frac{-12+4\sqrt{209}}{8} $
| -2(b-4)=5(-2b+6) | | 8k+4k=9k | | -8=5+x/2 | | x+6+3=-16 | | 8=5+x/3*1 | | -4x+8=172 | | 87=c/8+80 | | 9x+x−6x=76 | | 5x=56x=56/5x=11+1/5 | | 10y-8=5y+7 | | 10-63÷y=1 | | -4=5x-12 | | 21=2x-9x | | 4c+7+9c=33 | | 4x=4=36 | | -3x+11=-334 | | -6(2x-9)=30 | | 34+x=84 | | x+2=14x+10 | | x+6+3=16 | | 9(v+2)=3+11v | | -16y+6y=20 | | -7x+4=79-2x | | 20-8=4x | | 40/q=5 | | n+n+1=171 | | 8x+20=2(4x10) | | x,3x/4=8+x | | 10-2r-2=-4r-8 | | 17t-10=18t | | 9c-26=136 | | 11t-5t=6 |