If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x+1=0
a = 4; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·4·1
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{21}}{2*4}=\frac{-10-2\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{21}}{2*4}=\frac{-10+2\sqrt{21}}{8} $
| x^2-8x-200=0 | | 5x²–125=0 | | (2x)-2200/x=70 | | 6+x=-41 | | x²–5x–14=0 | | 3-9(-5x+5)=6x+5 | | 11(x-10)-2=30x-302 | | -5(x+10)+150=19+31 | | (x–7)²–36= | | 14x-7=7x+14 | | 8x+7=–9x | | (x–7)²–36=0 | | -5x+20x-18x=7-37 | | 8x+7=–9x=-2/8 | | 2x²-x+1=0 | | -10x-5=-15 | | X-1/4+3/2=4x-5/8 | | 2.19(x+2)^(2)-2=0 | | 7(10x-1)-11=-2+8(x-5) | | (x+3)+(4x-5)x2=46 | | 6y−(y−1)=4+5y | | -8x+16+3=-7x+7 | | 24/25=x/60 | | -5(x+2x)=5(x+12. | | 2x+x=27+3 | | 3^(6x)=27 | | X2-1/x-1=-2 | | 3(5+2x)=21 | | -5(x+2x)=5(x+12 | | 12=6(b-7) | | 10(1+3b)=160 | | m-5/2=3m-1 |