4x-3=7-x(x-8)

Simple and best practice solution for 4x-3=7-x(x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x-3=7-x(x-8) equation:



4x-3=7-x(x-8)
We move all terms to the left:
4x-3-(7-x(x-8))=0
We calculate terms in parentheses: -(7-x(x-8)), so:
7-x(x-8)
determiningTheFunctionDomain -x(x-8)+7
We multiply parentheses
-x^2+8x+7
We add all the numbers together, and all the variables
-1x^2+8x+7
Back to the equation:
-(-1x^2+8x+7)
We get rid of parentheses
1x^2-8x+4x-7-3=0
We add all the numbers together, and all the variables
x^2-4x-10=0
a = 1; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·1·(-10)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{14}}{2*1}=\frac{4-2\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{14}}{2*1}=\frac{4+2\sqrt{14}}{2} $

See similar equations:

| 2.1y4.75=1.8y-5.6 | | 8x+3=18x-5=180 | | -5w+2w=-3w | | 2(x-4)+4-x=6 | | 8c+7=3c-15 | | 2(d-6)=9d+2 | | -7-7(7x+6)=-24 | | u+5.5=11.99u | | 2x–7=–3x–10 | | 15x+25=5x-55 | | 8x+27=-9+5x+3 | | m/2.4=0.6 | | 2)2x+20=4x | | 2x+6=9x-3 | | 2/3x-5=1/2x+10 | | 3x+6=200 | | 10b+-7b-b=-8 | | 5x-5x-x=-4+9 | | 2(3x+9)=-28+40 | | x-26=33 | | 2x+6+7x-2=90 | | -3x+5-3=-3 | | 4(1+5x)=38-x | | 5n-(18-4n=-36 | | 14h-13h+4h-5h+3h=18 | | 4x1/4=16 | | 3(1+7x)-6x=-3(6+2x) | | 5-3(2x-1)=8+6x | | 3(2x+5)=8x+13 | | 7y+7=-4y-125 | | A=2(l | | 4(6x-1)=2x+9-8 |

Equations solver categories