If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x-2-(3/4)(8x-12)=13
We move all terms to the left:
4x-2-(3/4)(8x-12)-(13)=0
Domain of the equation: 4)(8x-12)!=0We add all the numbers together, and all the variables
x∈R
4x-(+3/4)(8x-12)-2-13=0
We add all the numbers together, and all the variables
4x-(+3/4)(8x-12)-15=0
We multiply parentheses ..
-(+24x^2+3/4*-12)+4x-15=0
We multiply all the terms by the denominator
-(+24x^2+3+4x*4*-12)-15*4*-12)=0
We add all the numbers together, and all the variables
-(+24x^2+3+4x*4*-12)=0
We get rid of parentheses
-24x^2-4x*4*-3+12=0
We add all the numbers together, and all the variables
-24x^2-4x*4*+9=0
Wy multiply elements
-24x^2-16x^2+9=0
We add all the numbers together, and all the variables
-40x^2+9=0
a = -40; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-40)·9
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*-40}=\frac{0-12\sqrt{10}}{-80} =-\frac{12\sqrt{10}}{-80} =-\frac{3\sqrt{10}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*-40}=\frac{0+12\sqrt{10}}{-80} =\frac{12\sqrt{10}}{-80} =\frac{3\sqrt{10}}{-20} $
| 3h=7(7/2−7/3h)−10 | | -36=3(y+8)+7y | | 3(5y+2)-y=2(y-3 | | x/8.5=8.2 | | -6u+2(u-7)=-38 | | (3y+5)^1/2+3=4 | | 2(-3x+9)=24 | | 7x-12=x+2+2x | | -38=5(v+5)+4v | | 2m+70=180 | | -1+5b-2b^2=0 | | -3/4+1/3w=-7/5 | | -y-6=y+10 | | r2+4=125 | | 36/b-2=2 | | 4+2(8x-6)=8+8x | | 2.5+(4k+2)=12k | | 3•n=23.1 | | -2x+1=-37 | | u/3–9=-10 | | 3x+9+2x=3(4x-4) | | 63x=49 | | 3x+8=-21 | | 3n=23.1 | | 2/7-1/4=y | | 5b^2-4b=1 | | 9+c=-2c | | 4-20t^-1/2=0 | | 7x-35=6(x-6) | | x-3=3/4x | | 4a+25-2=15 | | x3-8=-21 |