4x+3x+4x(2)=180

Simple and best practice solution for 4x+3x+4x(2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+3x+4x(2)=180 equation:



4x+3x+4x(2)=180
We move all terms to the left:
4x+3x+4x(2)-(180)=0
We add all the numbers together, and all the variables
4x^2+7x-180=0
a = 4; b = 7; c = -180;
Δ = b2-4ac
Δ = 72-4·4·(-180)
Δ = 2929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{2929}}{2*4}=\frac{-7-\sqrt{2929}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{2929}}{2*4}=\frac{-7+\sqrt{2929}}{8} $

See similar equations:

| -2x-12+16x=-6⅖ | | 6z+6=4z-8 | | -6(x+10)=6 | | 8-6t=-22 | | y=7(1,6) | | 6h=3+12+4h | | 4c+c=35 | | -1=3c-4 | | -(6+7v)=-81 | | 3+2h=4h-9 | | (x+5)°=(75-x)° | | 4a-18=-2a | | -84=4(3+3n) | | f(11)=-0.4(11)+16.3 | | 7n+11=1 | | (-1/2x)^100=-0.02 | | 61x=176 | | 100=5(4x-4) | | 3(x+5)=2(3x+12+ | | (3x-100)°=(2x-20)° | | 2/3x+15=16 | | f=8=13 | | 7r+25=r-29 | | 5x+5=22x+5 | | 6^(x+1)-18(6^(x-1))=108 | | 1-8p-7p=1 | | 52=2g | | 8x-22=5(x-1)+4 | | 5-2w=-13 | | 4d-16-2=-3d+3 | | 5x-6+2x+9=360 | | -1=3v-2v |

Equations solver categories