If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+1/5x=8
We move all terms to the left:
4x+1/5x-(8)=0
Domain of the equation: 5x!=0We multiply all the terms by the denominator
x!=0/5
x!=0
x∈R
4x*5x-8*5x+1=0
Wy multiply elements
20x^2-40x+1=0
a = 20; b = -40; c = +1;
Δ = b2-4ac
Δ = -402-4·20·1
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{95}}{2*20}=\frac{40-4\sqrt{95}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{95}}{2*20}=\frac{40+4\sqrt{95}}{40} $
| C=20(7×c) | | x+8+58=90 | | A(n)=–5•3n– | | 0=7(t-3)+6 | | -6=-13a | | x²-30x-150=0 | | n+(-14)=0 | | 3p÷5-6=5 | | x^2=-8+9 | | x^2-6x+41=0 | | -6x^2-11x-3=0 | | ⅔t-11=64-4⅓t | | -3v^2+11v-8=0 | | k2-4k3-45=0 | | -6u^2-5u+1=0 | | 5u^2+41u=42=0 | | 3(x+4)-(2x+7)=0 | | –1/2x=4 | | -4x-3=7+6x | | –5x-15=10+20x | | (8x-10)+(3x+90)=90 | | 8^(4x)=1/16 | | 5C=55/9x-32 | | (5/9)x(55-32)=C | | (5/9)x(F-32)=C | | |(x-6)(5x^2)=0| | | 5x-20x=-15x | | (x-6)(5x^2)=0 | | 4x+1/3=x+1/3 | | 3x+1/2=2x | | 2x+19=-2x-13 | | x+5=5x+51 |