4x(8-x)-2=9x-20+x-5

Simple and best practice solution for 4x(8-x)-2=9x-20+x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(8-x)-2=9x-20+x-5 equation:



4x(8-x)-2=9x-20+x-5
We move all terms to the left:
4x(8-x)-2-(9x-20+x-5)=0
We add all the numbers together, and all the variables
4x(-1x+8)-(10x-25)-2=0
We multiply parentheses
-4x^2+32x-(10x-25)-2=0
We get rid of parentheses
-4x^2+32x-10x+25-2=0
We add all the numbers together, and all the variables
-4x^2+22x+23=0
a = -4; b = 22; c = +23;
Δ = b2-4ac
Δ = 222-4·(-4)·23
Δ = 852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{852}=\sqrt{4*213}=\sqrt{4}*\sqrt{213}=2\sqrt{213}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{213}}{2*-4}=\frac{-22-2\sqrt{213}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{213}}{2*-4}=\frac{-22+2\sqrt{213}}{-8} $

See similar equations:

| 4x(8x-x)-2=9x-20+x-5 | | 12+7k=5+7k | | R=1+3w/2 | | 0=(21-2x)*(29.7-2x) | | 4(2+b)=28 | | #3x+2=8 | | (2x+1)^2=100 | | 0=30-9.8x | | 0.5/20=15(0.5)^(-t/5730) | | 2x(4x−1)2(10x−1)=0 | | 1.3-0.086x-0.488x²=0 | | 1.54i-3.85=3.16-2.58i | | 4m+5=9+m+5 | | (2+4x)+10=22 | | 2x^2+7x−4=0 | | 2x2+7x−4=0 | | 18/7=264/x | | 2+(-3)x(-7)-(-4)+(-3)x(-8)/4=0 | | 6x+12x+2=4 | | 5(3x+2)=3(2x+1)+2x+1 | | 8(x-4)-6(3x-3)=16 | | 23-(2x+10)=5x+22 | | 23-(2x+10)=5x+22) | | 3x–1=3x+1 | | (3x+4)²-169=0 | | 4x-30+7x=180 | | 4) 5x+26=3x+18 | | -6(3x+7)=-18x- | | 1/7⋅(x+55)=8 | | 2=k+2/2.5 | | 15-2d=11 | | 5+2=5x+9 |

Equations solver categories