If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(5x+45)=360
We move all terms to the left:
4x(5x+45)-(360)=0
We multiply parentheses
20x^2+180x-360=0
a = 20; b = 180; c = -360;
Δ = b2-4ac
Δ = 1802-4·20·(-360)
Δ = 61200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61200}=\sqrt{3600*17}=\sqrt{3600}*\sqrt{17}=60\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-60\sqrt{17}}{2*20}=\frac{-180-60\sqrt{17}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+60\sqrt{17}}{2*20}=\frac{-180+60\sqrt{17}}{40} $
| 12x-7+3x-x=16-9x | | y+2=7+6(6y-1) | | -4(x-1=2(-3x+9) | | 21-17=2(x-6) | | 40x+100=30x+110 | | x^2-3=5x-9 | | 157=6q+7q+3 | | -n/7=3 | | 4(x+8)-8x=24 | | 3(4-7)-(-6)=x | | 0.8n+0.1=0.5(n+4) | | 15y+1=-6+4(9y+1) | | 8x^2-16x-11=0 | | 24=2n-6 | | 2x+20+2x+60=180 | | 40x+110=30x+110 | | 3x+6+1=-2x-5+5x | | 2x+7.50=22 | | 64x^2+48x-7=0 | | -6+5y=2y+12 | | (8x+10)+(4x-52)=90 | | -10m+10=-8-7m-6 | | 400x+100=30x+110 | | 4x-6(3x+4)=-10 | | 3x+6+1=-2-4x-(x-1) | | -25=5x+5 | | s=1/2(2+8)2 | | 150+30p=1700 | | 12=2e | | −16t^2+40t+46=0 | | 2(3x-5)-(3x-2)=1 | | x+12=85 |