If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(2x-10)=140
We move all terms to the left:
4x(2x-10)-(140)=0
We multiply parentheses
8x^2-40x-140=0
a = 8; b = -40; c = -140;
Δ = b2-4ac
Δ = -402-4·8·(-140)
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{95}}{2*8}=\frac{40-8\sqrt{95}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{95}}{2*8}=\frac{40+8\sqrt{95}}{16} $
| 9x-19=5x-11 | | 29-4(8-6n)=3(5+6n) | | 2(p+7)=4-8p | | z/23=17 | | 4,883÷7=h | | -3x-5x+4x=24 | | 22+7n=21n+-2(4n+-2) | | 2x15=3x | | -8a-5=3-6a | | 2s+3s=30 | | 2x15=-3x | | 33.8c=23 | | 0.7x-6.8=3.3 | | 6h=684 | | 24x-30=10x+12 | | ×+3y=6=(1) | | 16+7p=2(4p+4)+3p | | –16=–4(p+12) | | 5x-(x+4)=2(x-7) | | -4=(d)/(3)+2 | | 3-3y+5=4y-12 | | 24u=864 | | 6x-7=2x-11 | | 7x+8x-3=3(5x+3) | | 6x+7=2x-11 | | 13-3r=3+2r | | 5(m+4)=4m+19 | | -2/4x=6/8 | | 28d=532 | | 4.99+2.8s=19.9s+15.9s-8.21 | | -2-3m=m-2-4m | | 7(3y−3)=20 |