If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x=13
We move all terms to the left:
4x^2+20x-(13)=0
a = 4; b = 20; c = -13;
Δ = b2-4ac
Δ = 202-4·4·(-13)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{38}}{2*4}=\frac{-20-4\sqrt{38}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{38}}{2*4}=\frac{-20+4\sqrt{38}}{8} $
| 2562=42(p=25) | | 3r^2+1=-4r | | 4−2x=22 | | 10x-20+10x=14=126 | | 2r+9=4r-13 | | 2+5(a+2)=77 | | 11+2x=39 | | (10x+15)°=(5x-27)° | | x=2.1+0.6x | | 17x-7=58 | | 46=(4x+3)(3x-1) | | 4(x)=45x+55 | | f-7/9=-6 | | 9-k=18 | | 4x+100=308 | | –t+–15=3 | | 3+5x=88 | | x=2/7=-3/5 | | 6a-39=3(1+4a) | | n+9/4=-9 | | 25x+5x=180 | | 14+5(3x+7)=-26 | | 18=−5b−17 | | -2=6+n/2 | | 10/4=18/3x-3 | | t−232 =−25 | | 5m-1=m=7 | | 3x-42=39 | | 7r-5-3r=8 | | 3x+2+90+55=180 | | n6=11 | | k/9.9=3.1 |