If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x=43
We move all terms to the left:
4x^2+12x-(43)=0
a = 4; b = 12; c = -43;
Δ = b2-4ac
Δ = 122-4·4·(-43)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{13}}{2*4}=\frac{-12-8\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{13}}{2*4}=\frac{-12+8\sqrt{13}}{8} $
| 8x+3x=6x-10 | | 1=-4x-23 | | -9(x-6)=-11(x-5) | | 6=12-6x | | -80=12-6x | | 3(x-3)–4=2 | | 7/2x+2x-9=26 | | 2×+3y=15 | | 18x+3-15x+11= | | (x+11)x3=54 | | 5(7+x)=75= | | 5x+12=2x–9 | | (2x+2)^2-9=(2x+5) | | 2*5+5b=20 | | 14x2+17x−6=0 | | 3(g+9)=12 | | (x+11)x3=51+3 | | t/6+3=5 | | 3(j+1)=30 | | 9x=75+4x | | 51+3=(x+11)x3 | | n/8=0.6 | | 30-25b-6b=-26b+200 | | -3-3x=-5-5x | | 6x+22=5x+25 | | 2(x+5)=-5(1-x) | | x/8=5/1/2 | | 6(x+5)=13x+2 | | -2x(x+2)=-12 | | .10-15a=25-20a | | x/8=51/2 | | p*p=144 |