If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+20u=0
a = 4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*4}=\frac{-40}{8} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*4}=\frac{0}{8} =0 $
| 20+6x=–2x+26 | | (36.3)/x=2 | | 5(-1y+-3)=-25 | | y=21-3·2 | | 10=−2t | | y=21-3·1 | | X-(.03x)=173500 | | x=12+1/24 | | −12n= −60−60 | | −12n= -60 | | -48x+578=0 | | x/x2-48x+578=0 | | 7u+33=5(u+3) | | .25x=160000 | | .2x=160000 | | (3p-2)/4=(4p+2)/3 | | 78x=78 | | x+(x*0.05)=111 | | -5a+8a=-4+7a | | X=59x= | | 2(5^((3x)))=31,242 | | n+1/2=41/2= | | 1/2x^2+2x-14=0 | | 13b-13b+3=3 | | x+43=x+24 | | 15t+10=- | | 15x-224-73/6=0 | | (15)(x)-224-((73/6))=0 | | x/5+x/10=(x-3)/2 | | 05x=1 | | x+23=7x-2 | | 4x+1=9 |