If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u-16(12-u)=(12-u)u
We move all terms to the left:
4u-16(12-u)-((12-u)u)=0
We add all the numbers together, and all the variables
4u-16(-1u+12)-((-1u+12)u)=0
We multiply parentheses
4u+16u-((-1u+12)u)-192=0
We calculate terms in parentheses: -((-1u+12)u), so:We add all the numbers together, and all the variables
(-1u+12)u
We multiply parentheses
-1u^2+12u
Back to the equation:
-(-1u^2+12u)
-(-1u^2+12u)+20u-192=0
We get rid of parentheses
1u^2-12u+20u-192=0
We add all the numbers together, and all the variables
u^2+8u-192=0
a = 1; b = 8; c = -192;
Δ = b2-4ac
Δ = 82-4·1·(-192)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{13}}{2*1}=\frac{-8-8\sqrt{13}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{13}}{2*1}=\frac{-8+8\sqrt{13}}{2} $
| 2√x=30 | | 10x^-4x=8 | | 15=8x/3+6 | | 7x-6+3x=x-2 | | -7+6i/9-4i=0 | | -3x/5x=10 | | 5p24p=6 | | -(-x)=x(11/15) | | -16t²+64t+6=54 | | 5^3-x=20+5^x | | 16*8^x=(1/√2)^x2 | | 2x–1=26 | | 10x^2+23x=-12 | | 8x+1/6=1/3(1/2+9x)+5x | | 12x/6=13(1/6) | | 12x/6=13{1/6} | | 2^x2*0.25^x=8 | | (a-1)/3-(a-2)/4=1 | | 12x/6=13+1/6 | | 12x/6=13*1/6 | | 7x/8=9 | | X+(2×y)=402 | | 12x/6=131/6 | | 2y+4=-2y-1+7 | | 1/2+(x+2)^2=x(x-1) | | v-33=7 | | 1/2+(x+2)*2=x(x-1) | | 33x=32x–4 | | 1/2+(x+2)2=x(x-1) | | 20000-0.05x=2000 | | (50-2x)(40-2x)(X)=0 | | V²+9v+14=0 |