If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-16t+15=0
a = 4; b = -16; c = +15;
Δ = b2-4ac
Δ = -162-4·4·15
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*4}=\frac{12}{8} =1+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*4}=\frac{20}{8} =2+1/2 $
| 6u+24=2(u+4) | | -5(y+6)=2y-37 | | 3y-3=8(y-6) | | 18=6(w-3)+3w | | 21=4(u+6)-7u | | -8y+4(y-7)=-24 | | W^2+20w=30 | | -34=4v+4(v+12) | | 9=2(x-6)+5x | | 4x+3(x+7)=35 | | (A)*30=210a= | | 18=2(v-1) | | 1-2u=21 | | -8(u+1)=16 | | -71=1-9y | | 5x2-2x3=4 | | Y+7y=-24 | | 2(3x-4)+12=16 | | 0.8=1.5x | | x=-1/3(12)+5 | | (x)2.400=15 | | 20b^-6=0 | | 3x^-7=9^3^x | | 5x+(4-2x)=16 | | x(2.5)=3.9 | | h=3-10(-7.1) | | 6-x^2+x^2+2x-80=x | | 15x+1.200=30x+500 | | 300+0.014x=200+0.25x.011x=100 | | 300+0.014x=200+0.25x | | 4p-9=-2p*21 | | 8t/4t=2 |