If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-11t+6=0
a = 4; b = -11; c = +6;
Δ = b2-4ac
Δ = -112-4·4·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-5}{2*4}=\frac{6}{8} =3/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+5}{2*4}=\frac{16}{8} =2 $
| 2q=5 | | 2^x=115 | | 5^x-2=2^3x-6 | | 2^2h-1-9×2^h-2+1=0 | | 6y-14=-38 | | (x^2-6x)(x^2-3)=(4x^2) | | (x^2-x^2)(x^2-3)=(4x^2) | | {4,2-x}2=-224,2−x | | 3n-10=3(n-2)-4 | | {4,2-x}2=-224,2−x =−2 | | 28+(3x-5)+70=180 | | 2.6=9.2^n | | 5v-7=5(v-1) | | b–4=8 | | (X-3)x(x-8)=0 | | 8-4x+7=7-3x | | 10=x/0.05 | | 4+6=8x-6 | | 3-x=6+107 | | 8x+6=1ö | | 26=4(x+9) | | 12-2x+x=6+6 | | 2x(5^x)x(5^x)-6x5^x-6x5^x+21=11 | | 2x-8=13x+16 | | 4(5x-2)=2(9x+ | | 10+6n=–10+4n | | 2x^-10=40 | | 122x-2=20736 | | 0.6(x+4)=0.55(2x+6)-3.3 | | 4x+7=-12+6x | | x^2+36x+2040=0 | | 5(4+2x)=9(x+4) |