If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2+5p-3=0
a = 4; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·4·(-3)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{73}}{2*4}=\frac{-5-\sqrt{73}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{73}}{2*4}=\frac{-5+\sqrt{73}}{8} $
| Y=(-1)x+(-3) | | 5=−4y−21 | | c=2.50+0.15 | | 4x+6=-(-3x+5) | | (9x-43)+(6x+5)=38 | | 3=0.4m-8 | | 4x+6=-(3x+5) | | 124/3=x | | (9x-43)+(5x+5)=14x-38 | | 3(x+2)/2=2x-1 | | (9x-31)=(6x-5) | | -45x–7=18 | | (9x-31)+(6x+5)=15x-0 | | 9x-31=6x+5 | | a5=1458(1/3)^5 | | 9x-31=5x+5 | | 9x-331=5x+5 | | 5x-17=-39 | | 1/8x=7+7/8x | | 4x+6x=-(3x+5) | | 6x-14=4x+14 | | 16=−8−9y | | -3(t-8)=323 | | 2x+42=13 | | 0=13x-9 | | –5+4r=7+10r | | 2/3x-5=-x+4/3 | | -10x=-x-3 | | -8x+10=74 | | x-6(-12/5)=10 | | 8y+-8y=0 | | -2(10+6y)+7y=-8 |