If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-4n-35=0
a = 4; b = -4; c = -35;
Δ = b2-4ac
Δ = -42-4·4·(-35)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24}{2*4}=\frac{-20}{8} =-2+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24}{2*4}=\frac{28}{8} =3+1/2 $
| 3y-7=19-1y | | 3y-7=19-19 | | 17x+(-7)=-11+13x | | 6x+8-3x+3=x-1 | | 2y+5=3y-7 | | 2y-y+1=0 | | 8y-6y+12=4 | | 5(2×2x)=3x | | 20-2/3x=16 | | 3x+2=7x−18 | | 2x5=3x-7 | | 3+3y=1-13y | | v/5=17/8 | | 4×+16y=3 | | -(1z+5)=-14 | | 0.55x=2.2 | | Y-2.94=-0.42a | | x/1.8=2.9 | | 34t/(5t-8)=1 | | 5x+17-4x=-2-12 | | 6/x+3/x-7=x-4/x-7 | | x3/2x-1=1 | | 34t/5t=8 | | 322=(x+7)x | | x5/2=x3 | | -9x+49=-4x+9 | | 3x-9/6=-3 | | x^2+7x-322=0 | | x-3/9=7 | | -5x-12=-3x+6 | | (34r/(5r-8))=0 | | 4(x-5)=-3x+5x-16 |