If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-12=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $
| w÷1.5=4 | | -9(6x-8)=-6 | | 2=–v–9/6 | | 3+x=4+0.5x | | (1/5)k=5 | | 10–9u=1 | | -7(5k-4)=-7 | | x=3+(x*6) | | 1/6x5= | | 6=6(x+12) | | 10+2x=-8-16x | | -8(-5x+1)=312 | | L=2x-5 | | 6b+14=7−b | | L=2x-6 | | t–19=–11 | | 6(-7x+8)=3* | | 5(2v+1)=55 | | -9a+5=-13 | | 7x–11=3x+9 | | 0.5c=9 | | 5x+x+9=-45 | | -2(x-3)=14-4x | | −8+4y=20 | | q/5=–1 | | 6(x+7)=47 | | 2x+1.50=79.50 | | -4(-8x-8)=96 | | –8=–2w | | -9z=-5z+2 | | .3/4d–11=1/4d–61/2 | | -7a=-5a+10 |