If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+12n=0
a = 4; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·4·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*4}=\frac{-24}{8} =-3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*4}=\frac{0}{8} =0 $
| 2.3+5t=-9.99 | | 19=7=3a | | n+7=2n-4 | | (5(3w+1)÷4)=0 | | 6(5-x)=11 | | 4(5(3w+1))=0 | | 0.6n-1=0.5n+2 | | 7y+5y=72 | | 13x+25=6x+116 | | 3/4z=-18 | | -22y=15 | | 2(3+2)=2x-1-x | | 7r+16r=115 | | -9=t-13 | | a3=1.57 | | (14x+8)=(4x+28) | | 2.8n-8.4=-1.3n-2.6 | | 4x+6=9x-1 | | 4y+y+50=6y+50-4y | | 2*15+2x=80 | | 2t(4-t)(3t+1)=0 | | 21k-56=-24k-12 | | f(-2)=3^(-2+1) | | 7/9c=3/5 | | d/4+6=2 | | w/3+1=6 | | 9s+5=41 | | 15x=80=180 | | 15x=80=18-0 | | p’’+p-9=0 | | 2=38.5x | | 7c-9=40 |