If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k(k+10)=0
We multiply parentheses
4k^2+40k=0
a = 4; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·4·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*4}=\frac{-80}{8} =-10 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*4}=\frac{0}{8} =0 $
| 10.3x+95.83=-9.7+95.67 | | 27-7k=6k | | -10.6=0.5m+11.7 | | 6x+x-6+x-6=108 | | g-3.7=6 | | 13y-24-13y=17y-13y | | 3+6x=18=x | | 10-x=9-7x | | 2.1v-0.1=7.4 | | 3.7k+7.2=8 | | 61=9x-4+3x+5 | | 7=3a-9.2 | | ((0.5)x)0.5=5 | | 2d-5=31 | | -7-5(4x-15)=-3 | | x+x+170=2500 | | 99n-9=-441 | | 6x-19=9x+6 | | 1/2(4x-12)=-2 | | 3c-8=-62 | | 48+13x=10x | | -7(2x-4)=84 | | -5x+6(-x+4)=123 | | 16/4=4/x | | 5=b/4-1 | | 11+9j=83 | | 3x-4=-6x+59 | | 7p^2+23p=-6 | | 6x-5(-2+13)=-193 | | F(x)=x/2x-6 | | 6x-20+3x+13=180 | | 7p^2+23p=6 |