If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2+33h+8=0
a = 4; b = 33; c = +8;
Δ = b2-4ac
Δ = 332-4·4·8
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-31}{2*4}=\frac{-64}{8} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+31}{2*4}=\frac{-2}{8} =-1/4 $
| 50+50+4x=242 | | 3.8m-3=3.8m-7 | | 5-(x+4)=x-9 | | 4x-3-135=90 | | -7-8x=-31 | | x+44+70+70=180 | | 8w+14-3-6w=9 | | 10x-2-98=90 | | (-4/5)x=(16/15) | | v(v−8)=0 | | 1/2(6x+4)=50 | | 5+10c=140 | | 2=1+n/2 | | 5x(x+4)=x-9 | | 2x=(360÷9)=x | | 8n+8=4 | | X+x+x=10+4×x | | -7=5y+3 | | 36-2y=12 | | 4(2x)−3=18x+28 | | 24=h/18-16-14h= | | 8t=78 | | 2u+11=11+14 | | u/3=u/4-3 | | 73/8=n+65/8/8=n+65/8 | | 72/85=x/200 | | 2x=(360÷9) | | 293=179-w | | -5=4=k | | 4u=3u-36 | | 6+-8=2(2+t1) | | 2/3(3x+6)=3x-4 |