If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2+24h+11=0
a = 4; b = 24; c = +11;
Δ = b2-4ac
Δ = 242-4·4·11
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-20}{2*4}=\frac{-44}{8} =-5+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+20}{2*4}=\frac{-4}{8} =-1/2 $
| -6x+14=-2 | | 5(x+2)=-4(x-5)+8 | | 4y-20=-2y+-4 | | 4+9+7x=64 | | 8x+6x=26 | | 11x-25+129=180 | | 40x+15x=1200 | | F(x)=x^2-3/4 | | 18-3x=4x-66 | | 20=2x+2x+4 | | 12d^2+19d+4=0 | | 11x-25=+129=180 | | 4z/7-3=3 | | 15=8x=3-6x | | 5x+30=6(x+5) | | 3(y+5)-(4y-8)=-2y=+10 | | -1(x+5)=-10 | | 5/x-4=-3/x+4+32/(x-4)(x+4) | | 4(x-3)=3(x+4)+2x | | (2x)^2-4=16 | | x+2/16=7/8+x-3/6 | | 9x-33=48.X= | | 8+7x+5x=80 | | 2x-6(4x+9)=-21x3(6-x)+2x-72 | | 5x-13-7x+4=4-9x-9+3x | | 4y/7-7/8=3/56 | | 55^y=0.25 | | 17x+213=x+314 | | 17x+341213=x+ | | 7x-(2x+19)=1 | | 36-x=9x-4 | | 4x^2-11x+8=-4x+5 |