If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4d^2-25d-20=0
a = 4; b = -25; c = -20;
Δ = b2-4ac
Δ = -252-4·4·(-20)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-3\sqrt{105}}{2*4}=\frac{25-3\sqrt{105}}{8} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+3\sqrt{105}}{2*4}=\frac{25+3\sqrt{105}}{8} $
| -2(r-15)=4 | | 1/3(1.650=0.15x) | | 2x^-2=(-81) | | 2x=3(x+6) | | 2x/3=3(x+6)/4 | | 2x/3=3(x=6)/4 | | 7(2x-3)=4(x+6) | | 52-y=26 | | 3(x+5)=3(2x+1) | | 4x+3=3+8 | | -4(y+3)=3y | | -4(y+3=3y | | 1/3x+4=x-2/5 | | 7-7s=49 | | 49=7-7s | | Z=-2-i | | 2^69=x | | 7q=217 | | 3q=126 | | 8+6(4x+9)=28 | | 20+j60=0 | | -5(2x-2)=-14 | | 2z-(-10)=2 | | 8y^2+6y-20=0 | | 7x+13=2x+32 | | 15x100=1500 | | 6x^2-43.5=250 | | -7(x+4)=-5x-8 | | -8r=-r-84 | | 11=-9a+6a+5 | | -7(z+2)-17=18 | | -24=8x-5(3+x) |