If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c^2=10
We move all terms to the left:
4c^2-(10)=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| -37.5=350x*1050 | | -375=350x*1050 | | 2+44t-16t^2=0 | | -7v/8=42 | | (2y+39)+(2y+39)+(3y-9)=180 | | 3(a+2)=2(a-3) | | -8n+4n-12=-7-5n | | 90x90=9000 | | (1/6x+9)^2=75 | | 5x-12.5=3x+8.5 | | 2a-160=1+60 | | 5(x-3)=4x-1 | | 193=x(2x) | | 29(2x+3)=-6(x+9) | | 4x+2=4(2)+2 | | x+21=497 | | 292x+3)=-6(x+9) | | 5(3x+7)=20–2(x+1) | | -14d–14=4d+10 | | 3/4(x)-3=1/2(x) | | y+y+83=180 | | (4x+24)+(3x+34)+(2x+32)=180 | | 6x+9=9x−6 | | 9=4.2x-7 | | 15x-4=14x+5 | | 6q+9=–9+3q | | 1/10x=2/5 | | 12x+5+8x-5=90 | | 9-4x=x | | 10–2x=17–7x | | -0.8h+12=0 | | 0.5x+8=2/3x |