If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c^2-16=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| x12=24 | | 8+x+4=3 | | 4(x-5)=2(x+12) | | 2(3b-4)=4(b-1)+2b | | -6x-8x=-126 | | 5(x+2)=3(x+16) | | 75=-200+p | | 5x+7=–29-7x | | 1x+4x=20 | | 5x+7=29-7x | | u2–5u+6=0 | | 3=12y-9y | | 2/3(9x-15)=1/2(10+14) | | 16d2-40d+25=0 | | -0.21-0.08r=-0.1444 | | 150*0.8*x=x | | 10a=2(6a+5)-2a | | 0.68+0.99u=1.6304 | | K^2-4k+13=0 | | (g•g)+4g-32=8 | | -3-b=0 | | -x2+3x+8=0 | | 3x=6=24 | | X(x7)-12=23 | | 5-3z=-1 | | 7v/3v=21 | | -2x+-11x=81 | | u^2–11u+18=0 | | M=t/5.6 | | m^2+21m=198 | | f=9/5(191.8-273.15)=12 | | -m=10 |