If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-4b-35=0
a = 4; b = -4; c = -35;
Δ = b2-4ac
Δ = -42-4·4·(-35)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24}{2*4}=\frac{-20}{8} =-2+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24}{2*4}=\frac{28}{8} =3+1/2 $
| 6x+15-2x=15x+4 | | 38x-1=-2+56x | | 3x+13/5+x+8/6=7 | | y/3+1/4=11/4 | | 5.63=-3(1-2x) | | d/4=11/2 | | 9*x=2/3 | | 15/5=21/x | | 13-4x=4(12x)-39 | | y/3+1/4=23/4 | | 2x+5x−11=−46 | | -18.9q=3.48-18.3q | | -19+3v=7+5v | | 2(x+3)=2(2x-5) | | 4(7-y)=(4.7)-(4.y) | | -76=6(k-7)-2(5+6k) | | 12z+4z+11z−10z=-17 | | (1+1/x)^x=2.25 | | 6n+3=2(3n+7) | | -7s=-6s+6 | | 9h=2/3 | | 6t−5=7t | | 15/x=39/13 | | -1.28-13.7k=14.4-12.9k | | k−4=-k | | 10/8=12/x | | -2.6f+14.28=12.2f-4.72-16.8f | | -3/8k=9 | | 2(x-4)=1/2(2x=4) | | 0.22x+50=83 | | 10−4u=-3u | | 0.22x+$50=83 |