If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2+4a-35=0
a = 4; b = 4; c = -35;
Δ = b2-4ac
Δ = 42-4·4·(-35)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-24}{2*4}=\frac{-28}{8} =-3+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+24}{2*4}=\frac{20}{8} =2+1/2 $
| 2(m+2)^2+9(m+2)-5=0 | | 45+0.2m=25+0.3m | | 2x2=11x-12 | | 16t-6=4-4t | | 59x=3)-6x=3(2x=1)-4x | | 2x/3=x/2+1/3 | | 3n^2-20=0 | | 3n^2-n-1850=0 | | y÷-4=-12 | | 2x^2+2x=3x+3 | | 10-10x-6-5x=0 | | 2x+x-11+3-7×=15 | | 2x-6=×-8 | | |5x+3|=14 | | 20x-10=x | | 2t^2+31t-16=0 | | 2x+3=10x | | 7x+2(x-8=38 | | x/5-1=x/7+4 | | 3g^2+10g-13=0 | | x^2+20x-36=24 | | 7n=-9+10n | | 2+7n=2-9+5n(2) | | .19+.08(y+5000)=1210 | | Y=-16x-157 | | 5^(x+3)-5^x=100 | | 2=1.11^n | | 5x^2=-36 | | 5x+800=8600 | | 3(x-1)-(x+4)=x+5(x-1) | | 3(x+1)-(x+4)=x+5(x-1) | | (1)/(16)=64^(3x+5) |