4a(a-2)=2(5a-2)

Simple and best practice solution for 4a(a-2)=2(5a-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4a(a-2)=2(5a-2) equation:



4a(a-2)=2(5a-2)
We move all terms to the left:
4a(a-2)-(2(5a-2))=0
We multiply parentheses
4a^2-8a-(2(5a-2))=0
We calculate terms in parentheses: -(2(5a-2)), so:
2(5a-2)
We multiply parentheses
10a-4
Back to the equation:
-(10a-4)
We get rid of parentheses
4a^2-8a-10a+4=0
We add all the numbers together, and all the variables
4a^2-18a+4=0
a = 4; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·4·4
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{65}}{2*4}=\frac{18-2\sqrt{65}}{8} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{65}}{2*4}=\frac{18+2\sqrt{65}}{8} $

See similar equations:

| 7x+5=8x+10* | | x-58=-72 | | -3(3y-10)-y=-2(y-2) | | 7m+10=4m+13 | | 7-1/6x=21 | | —5x—1=-12x—16 | | -2∣5w-7∣+9=-7 | | x-99=33 | | −0.4x+1.2=3.6 | | -4x²-12x=0 | | -0.10(37)+0.40x=0.05(x-18) | | 7(x+7)=8 | | -5x-1=-12x-16 | | 9x-5-8x=12 | | 1(x+9)=8x+2 | | 4x+8(3)=180 | | 20.2-8.95=x | | -0.10(33)+0.45x=0.05(x-2) | | 7x-3.7=1.2x+5.3 | | 3t+1/4=1+9/8+t-7/8 | | 2(x-4)=5x+13 | | 19=7+2w | | 4x-5=3x-1+3x-1 | | 9(x+8)=2x+9 | | X-7/5+7/5=x/3 | | -3(12x+9)=99 | | 6m(m+4)=5m-10 | | 6(1-3k)=-38=4k | | w÷-4+7=9 | | 5x-3+2x=8+4x+4 | | 2.80=(-0.75+x)7 | | 7x/35+5x/35=12 |

Equations solver categories