4=3(i+1)4i+6

Simple and best practice solution for 4=3(i+1)4i+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4=3(i+1)4i+6 equation:



4=3(i+1)4i+6
We move all terms to the left:
4-(3(i+1)4i+6)=0
We calculate terms in parentheses: -(3(i+1)4i+6), so:
3(i+1)4i+6
We multiply parentheses
12i^2+12i+6
Back to the equation:
-(12i^2+12i+6)
We get rid of parentheses
-12i^2-12i-6+4=0
We add all the numbers together, and all the variables
-12i^2-12i-2=0
a = -12; b = -12; c = -2;
Δ = b2-4ac
Δ = -122-4·(-12)·(-2)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3}}{2*-12}=\frac{12-4\sqrt{3}}{-24} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3}}{2*-12}=\frac{12+4\sqrt{3}}{-24} $

See similar equations:

| (32x+3)=(4×-4) | | 60x+18=42x-26 | | 222=5^x | | 145=-5(1-5v) | | x/6=2/10+x | | 1/2(6x-8)=7/5(x=5)-1/5 | | 3t^2-6t-10=0 | | 2(4x-5)=-10(x-8) | | 18g–-4g–20g+4g=-6 | | 3.5v=8=7.5v-4 | | 11x2=-30x-x3 | | 13m-11m=14 | | X•x•x=216 | | 5x+1=6x+3-3x | | 11x=-30x-x3 | | 9+7m=65 | | 13m–11m=14 | | 0.7(3x-5)+3.8x=14.5 | | 4(4c-12)=3(4c+16) | | 6s+s=7 | | 1x+7=8-2x | | 2r-r=19 | | 9(l=2)=3(l-2) | | 4x+11=3x-9 | | {x}{4}+9=10 | | 3^-x-4=5^-9x | | 3t^{2}+6t-24= | | -3h+-21=-18 | | 88+x=180 | | (2x+1)^2+3=21 | | 2-2(4-2x)=0 | | 5+x+x=180 |

Equations solver categories