4=2(2b+1)6b

Simple and best practice solution for 4=2(2b+1)6b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4=2(2b+1)6b equation:


Simplifying
4 = 2(2b + 1) * 6b

Reorder the terms:
4 = 2(1 + 2b) * 6b

Reorder the terms for easier multiplication:
4 = 2 * 6b(1 + 2b)

Multiply 2 * 6
4 = 12b(1 + 2b)
4 = (1 * 12b + 2b * 12b)
4 = (12b + 24b2)

Solving
4 = 12b + 24b2

Solving for variable 'b'.

Reorder the terms:
4 + -12b + -24b2 = 12b + -12b + 24b2 + -24b2

Combine like terms: 12b + -12b = 0
4 + -12b + -24b2 = 0 + 24b2 + -24b2
4 + -12b + -24b2 = 24b2 + -24b2

Combine like terms: 24b2 + -24b2 = 0
4 + -12b + -24b2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(1 + -3b + -6b2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(1 + -3b + -6b2)' equal to zero and attempt to solve: Simplifying 1 + -3b + -6b2 = 0 Solving 1 + -3b + -6b2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. -0.1666666667 + 0.5b + b2 = 0 Move the constant term to the right: Add '0.1666666667' to each side of the equation. -0.1666666667 + 0.5b + 0.1666666667 + b2 = 0 + 0.1666666667 Reorder the terms: -0.1666666667 + 0.1666666667 + 0.5b + b2 = 0 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + 0.5b + b2 = 0 + 0.1666666667 0.5b + b2 = 0 + 0.1666666667 Combine like terms: 0 + 0.1666666667 = 0.1666666667 0.5b + b2 = 0.1666666667 The b term is 0.5b. Take half its coefficient (0.25). Square it (0.0625) and add it to both sides. Add '0.0625' to each side of the equation. 0.5b + 0.0625 + b2 = 0.1666666667 + 0.0625 Reorder the terms: 0.0625 + 0.5b + b2 = 0.1666666667 + 0.0625 Combine like terms: 0.1666666667 + 0.0625 = 0.2291666667 0.0625 + 0.5b + b2 = 0.2291666667 Factor a perfect square on the left side: (b + 0.25)(b + 0.25) = 0.2291666667 Calculate the square root of the right side: 0.478713554 Break this problem into two subproblems by setting (b + 0.25) equal to 0.478713554 and -0.478713554.

Subproblem 1

b + 0.25 = 0.478713554 Simplifying b + 0.25 = 0.478713554 Reorder the terms: 0.25 + b = 0.478713554 Solving 0.25 + b = 0.478713554 Solving for variable 'b'. Move all terms containing b to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + b = 0.478713554 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + b = 0.478713554 + -0.25 b = 0.478713554 + -0.25 Combine like terms: 0.478713554 + -0.25 = 0.228713554 b = 0.228713554 Simplifying b = 0.228713554

Subproblem 2

b + 0.25 = -0.478713554 Simplifying b + 0.25 = -0.478713554 Reorder the terms: 0.25 + b = -0.478713554 Solving 0.25 + b = -0.478713554 Solving for variable 'b'. Move all terms containing b to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + b = -0.478713554 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + b = -0.478713554 + -0.25 b = -0.478713554 + -0.25 Combine like terms: -0.478713554 + -0.25 = -0.728713554 b = -0.728713554 Simplifying b = -0.728713554

Solution

The solution to the problem is based on the solutions from the subproblems. b = {0.228713554, -0.728713554}

Solution

b = {0.228713554, -0.728713554}

See similar equations:

| -10q+36=8 | | 8x-5.45=1.75-4x | | x=-70+17x | | K^2-12k-76=0 | | 3.5k=5.8 | | 9x-5(x-5)=2(x-5)+9 | | 6x-7=-4x+23 | | 5(x-12)=-40 | | 1/3x3.14x16x9 | | -3=-0.2n | | -(m-1)=3-2m | | 6(2x+1)=3(5x-2) | | 2.5b-3.1=1.8-3b | | 5t^2-30t/5t= | | 6x+7=-4x-23 | | (-6y+8)+(2y-11)=n-3 | | 3(4x+1)=4(3x+1) | | 3x-14-10x=10+2x+12 | | 7(p+8)+3p=106 | | 6(2x+1)=3(4x+3) | | z^2-2((1)^(1/2))=0 | | -13+12x=1 | | 2.5x-3.1=4.2-3x-2.4 | | z^2-(2(1)^(1/2))=0 | | 5(2x+3y)-3(3x-5y)= | | 17x-(-5)=22-15x+9x | | 24-6y=14 | | 5n-18=-27 | | z^2-2(1)^1/2=0 | | Log*x+log*(x+4)=log*12 | | 4(1/2x+2)=8(1/4x+1) | | x-4.1=2.5 |

Equations solver categories